CHEMISTRY ENTRANCE TEST SAMPLE PAPER

sample paper only provide 10 MCQ and 2 SAQ

Actual Paper Total 30 MCQ + 4 SAQ

Each MCQ is 2 marks Each SAQ is 10 marks

Instructions

- 1. This is a **closed-book** test.
- 2. It has a time limit of **90 minutes** and allows for only **ONE attempt (submission)**.
- 3. Alert the invigilator if you are facing technical difficulties.
- 4. You are to **ensure** that:
 - your laptops, computers and any other devices used for this test is in good functioning order and have uninterrupted power supply and internet connection throughout the duration of the test.
 - you are in a conducive environment throughout the duration of the test.
 - your answers are correctly saved by the end of the test.

5. You are **allowed** to use:

- a scientific calculator.
- A blank piece of paper (no larger than A4 size) for rough work. The paper will not be accepted for submission at the end of the test.
- 6. You are **not allowed** to:
 - leave the test or leave your devices throughout the duration of the test.
 - use the washroom throughout the duration of the test.
 - communicate with any person, either face-to-face or through any communication device, other than the invigilator.
 - refer to any references, e.g. textbooks, resources from a laptop or smart devices etc.
 - share materials (e.g. electronic calculator) during the test.
 - use any communication devices such as mobile phones, tablets, smart watches, headsets during the test.
- 7. Enter the password provided by the invigilator to start Test paper.

SECTION A (20 MARKS)

Answer **ALL** questions in this section in the spaces provided.

- A1. Methanol boils at 65°C and water boils at 100°C. Given that methanol and water are completely miscible with each other, which is the **MOST SUITABLE** method to separate a mixture of these two liquids?
 - a. Evaporation
 - b. Crystallisation
 - c. Fractional distillation
 - d. Paper chromatography

)

(

- A2. A stopper was removed from a bottle containing perfume **A** and the time taken for the scent to reach the opposite side of the room was noted. The experiment was repeated using perfume **B**, which had a **LOWER** molecular mass than perfume **A**. Based on the information provided, predict the time taken for perfume **B** to reach the opposite side of the room compared to perfume **A**.
 - a. Same as perfume **A**.
 - b. Shorter than perfume **A**.
 - c. Longer than perfume **A**.
 - d. Insufficient data to compare the time taken by perfume **A** and **B**. ()
- A3. Two isotopes of carbon are ${}^{12}_{6}C$ and ${}^{13}_{6}C$. Which statement about the isotopes is **TRUE**?
 - a. They have the same number of electrons and neutrons.
 - b. They have the same number of electrons and protons.
 - c. They have the same number of neutrons and protons.
 - d. They have the same number of neucleons and electrons. ()
- A4. A label is missing from a bottle of green solution **C**. In order to identify the solution, two chemical tests are carried out.
 - Test 1: A few drops of aqueous sodium hydroxide are added to a sample of solution **C**. A green precipitate is formed.
 - Test 2: Excess aqueous sodium hydroxide and aluminium are added to another sample of solution **C** and heated. A pungent gas, which turns damp red litmus paper blue, is produced.

What is C?

Chemistry Entrance Test Sample paper

- Iron(II) nitrate a.
- b. Iron(III) nitrate
- c. Iron(II) sulfate
- Iron(III) sulfate d.

)

(

(

(

- Which statement describes the formation of a covalent bond? A5.
 - Electrons are shared between metallic atoms. a.
 - Electrons are shared between non-metallic atoms. b.
 - Electrons are transferred from a metallic atom to a non-metallic atom. c.
 - Electrons are transferred from a non-metallic atom to a metallic atom. d.

)

- The electronic configuration of atom **D** is 2, 7. The electronic configuration of atom A6. E is 2, 6. What is the formula of the compound formed between atoms D and E?
 - D_2E a. b. DE₂ D₆E c. DE₇ d. ()
- Manganese(III) sulfate has the formula, Mn₂(SO₄)₃. What is the charge on the A7. manganese ion?
 - 2 +a. 3+ b. 2c.)
 - d. 3-
- A8. Dissolving sodium carbonate in water is an exothermic process. Which row shows the change in temperature of solution and the direction of heat flow when sodium carbonate is dissolved in a beaker of water?

	Temperature of solution	Direction of heat flow
a.	Increase	To surrounding
b.	Decrease	To surrounding
с.	Increase	From surrounding
d.	Decrease	From surrounding

)

(

A9. In which equation is copper reduced?

I:	$CuO(s) + H_2(g) \rightarrow Cu(s) + H_2O(g)$
II:	$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_2(aq)$
III:	$CuSO_4(aq) + 2NH_4OH(aq) \rightarrow Cu(OH)_2(s) + (NH_4)_2SO_4(aq)$
a.	I&II
b.	I & III
b. с.	

()

A10. The following reactions are carried out.

Reaction	Result
Ammonium chloride is added to	Gas F is given off.
barium hydroxide.	
Sulfuric acid is added to ammonium	Gas G is given off.
carbonate.	
Hydrochloric acid is added to an	Compound H is formed
aqueous solution of ammonia.	-

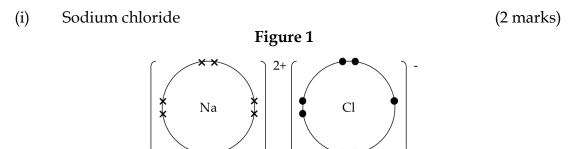
What are **F**, **G** and **H**?

_	Gas F	Gas G	Compound H
a.	Chlorine	Ammonia	Ammonium sulfate
b.	Ammonia	Carbon dioxide	Ammonium sulfate
с.	Carbon dioxide	Ammonia	Ammonium chloride
d.	Ammonia	Carbon dioxide	Ammonium chloride

()

------ End of Section A -----

SECTION B (20 MARKS)

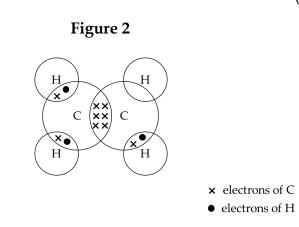

Answer **ALL** questions in this section in the spaces provided.

B1. (a) Table 1 describes the properties of compounds. Complete Table 1 by writing True **OR** False in the spaces provided. (2 marks)

Properties of compounds	True / False
A compound has a fixed composition.	True
A compound has a fixed melting/boiling point.	
A compound can only be decomposed by a chemical reaction.	

Table 1

(b) Sodium chloride and ethene are compounds with different physical and chemical properties. Figures 1 and 2 show the 'dot and cross' diagrams of the outer shell electrons in sodium chloride and ethene. Identify the **TWO** errors in **EACH** figure.


 $\boldsymbol{\mathsf{x}}\xspace$ electrons of Na

• electrons of Cl

Error 1:

Error 2:

(ii) Ethene

Error 2:

- (c) Explain, in terms of structure and bonding, why:
 - (i) both solid sodium chloride and gaseous ethene do **NOT** conduct electricity. (3 marks)

(ii) molten sodium chloride will conduct electricity. (1 mark)

B2. In thermite welding, iron(III) oxide reacts with aluminium according to the following reaction.

 $Fe_2O_3(s) + 2Al(s) \rightarrow 2Fe(l) + Al_2O_3(s)$

- (a) Fine powders of both iron(III) oxide and aluminium are used in this reaction. State the advantage of using reactants in powder form. (1 mark)
- (b) If 9.00 g of iron(III) oxide is reacted with 2.80 g of aluminium, calculate the theoretical yield of molten iron in the reaction. (7 marks)

(c) Determine the percentage yield if 5.23 g of molten iron is obtained from the reaction. (2 marks)

----- End of Paper -----

Official (Closed)	Sensitive	Normal
-------------------	-----------	--------

Periodic Table

						-			Group			3					
-	=											=	≥	>	5	N	0
							-										4
							т										£
							hydrogen 1										helium 2
-	0					-						11	12	14	16	19	20
	, eg											: œ	! U	z	0	ш	Ne
lithium	bervllium											boron	carbon	nitrogen	oxygen	fluorine	neon
3	4											5	9	7	8	6	10
23	24											27	58	ñ	32	35.5	4
Na	ВМ											AI	5	л.,	n:	5	Ar
sodium 11	magnesium 12	_										aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
39	40	45	48	51	52	55	56	59	59	64	65	20	73	75	79	80	84
¥		х	F		ວັ	ЧW	Ъе	ပိ		CC	Z	Ga	Ge	_	Se	Б	노
potassium 4.0	calcium	scandium 24	titanium 22	vanadium 22	chromium	manganese		cobalt	nickel 28	copper	zinc 30	gallium 3.1	germanium 3.7	arsenic 33	selenium 34	bromine 35	krypton 36
10	3	00	77	60	44 06	24	5	103	90	108	110	115	110	22	128	127	131
6 4	ა წ	° ≻	2. 7.	ce dN	o M	۲ L	2 2	2 f2	Pd	Ag	Cq	2 5	ŝ	Sb	P e	i I	Xe
ubidium	strontium	vttrium	Ę	niobium	ĕ	technetium	ruthenium	modium	palladium	sliver	cadmium	indium	; 5	antimony	tellurium	iodine	xenon
37	38	39	40	41		43	_	45	46	47	48	49	50	51	52	53	54
133	137	139	178	181		186	190	192	195	197	201	204	207	209	1	13	۱ ۱
S		La		Ta	≥	Re	ő		٤	Au	f	T1	Ч		P P	Ę	R
caesium 55	barium 56	lanthanum 57 *	hafnium 72	tantalum 73	tungsten 74	n rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
ı	1	1															
ŗ	Ra	Ac															
francium 87	radium 88	actinium 89 †	÷											s.			
*58-71 L	*58-71 Lanthanoid series	d series	_														
+90-103	†90-103 Actinoid series	series															
				140	141	144	I	150	152	157	159	162	165	167	169	173	175
				e C			E	Sm		B	q I	2	£	<u>ت</u>		٩ ۲	3
				cerium 58	praseodymium 59		60 61 61	samanum 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	67 67	emium 68	mulium 69	ytterbium 70	71
Key		a = relative atomic mass	c mass	232	ı	88	I		I,	I,	1	1	1	1	1	: ۱	ι.
×		X = atomic symbol	~	Ę	Ба		ď	Pu	Am	E.		5	Es		pW	No	Lr Investorium
` _		b = proton (atomic) number		thorium 90	protactinium 91	uranium 92	m neptunium 93	plutonium 94	amencium 95	cunum 96	97 97	califomium 98	einsteinium 99	100	101	102	103
1]		~														

The Periodic Table of the Elements